​REFERENZE BIBLIOGRAFICHE RIGUARDANTI LA FOTOBIOMODULAZIONE LED

0. Pinar Avci, MD, Asheesh Gupta, PhD, Magesh Sadasivam, MTech, Daniela Vecchio, PhD, Zeev Pam, MD, Nadav Pam, MD, and Michael R Hamblin, PhD     Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013 Mar; 32(1): 41–52.

1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012 Feb;40(2):516–533. [PMC free article] [PubMed]

2. Gupta A, Avci P, Sadasivam M, et al. Shining light on nanotechnology to help repair and regeneration.Biotechnol Adv. 2012 Aug 21; [PMC free article] [PubMed]

3. Seaton ED, Mouser PE, Charakida A, Alam S, Seldon PM, Chu AC. Investigation of the mechanism of action of nonablative pulsed-dye laser therapy in photorejuvenation and inflammatory acne vulgaris. Br J Dermatol. 2006 Oct;155(4):748–755. [PubMed]

4. Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008 Dec;27(4):227–238. [PubMed]

5. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005 Aug;23(4):355–361. [PubMed]

6. Greco M, Guida G, Perlino E, Marra E, Quagliariello E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1428–1434. [PubMed]

7. Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci. 2004 Feb;3(2):211–216. [PubMed]

8. Oron U. Light therapy and stem cells: a therapeutic intervention of the future? Interventional Cardiology.2011;3(6):627–629.

9. Lane N. Cell biology: power games. Nature. 2006 Oct 26;443 (7114):901–903. [PubMed]

10. Wong-Riley MT, Liang HL, Eells JT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005 Feb 11;280(6):4761–4771. [PubMed]

11. Pastore D, Greco M, Petragallo VA, Passarella S. Increase in <--H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem Mol Biol Int. 1994 Oct;34(4):817–826.[PubMed]

12. Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B. 1995 Mar;27(3):219–223. [PubMed]

13. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999 Mar;49(1):1–17. [PubMed]

14. Harris DM. Editorial Comment Biomolecular Mechanisms of Laser Biostimulation. Journal of clinical laser medicine & surgery. 1991;9(4):277–280.

15. Liu H, Colavitti R, Rovira, Finkel T. Redox-dependent transcriptional regulation. Circ Res. 2005 Nov 11;97(10):967–974. [PubMed]

16. Peplow PV, Chung TY, Ryan B, Baxter GD. Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg. 2011 May;29(5):285–304. [PubMed]

17. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005 Mar;31(3):334–340. [PubMed]

18. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response. 2011;9(4):602–618. [PMC free article] [PubMed]

19. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358–383. [PMC free article] [PubMed]

20. Basford JR. Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med.1995;16(4):331–342. [PubMed]

21. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012 Jan;27(1):237–249. [PubMed]

22. Hode L. The importance of the coherency. Photomed Laser Surg. 2005 Aug;23(4):431–434. [PubMed]

23. Kligman LH. Photoaging. Manifestations, prevention, and treatment. Clin Geriatr Med. 1989 Feb;5(1):235–251. [PubMed]

24. Takema Y, Yorimoto Y, Kawai M, Imokawa G. Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol. 1994 Nov;131(5):641–648. [PubMed]

25. Branham GH, Thomas JR. Rejuvenation of the skin surface: chemical peel and dermabrasion. Facial Plast Surg. 1996 Apr;12(2):125–133. [PubMed]

26. Airan LE, Hruza G. Current lasers in skin resurfacing. Facial Plast Surg Clin North Am. 2005 Feb;13(1):127–139. [PubMed]

27. Paasch U, Haedersdal M. Laser systems for ablative fractional resurfacing. Expert Rev Med Devices.2011 Jan;8(1):67–83. [PubMed]

28. Nanni CA, Alster TS. Complications of carbon dioxide laser resurfacing. An evaluation of 500 patients.Dermatol Surg. 1998 Mar;24(3):315–320. [PubMed]

29. Sriprachya-Anunt S, Fitzpatrick RE, Goldman MP, Smith SR. Infections complicating pulsed carbon dioxide laser resurfacing for photoaged facial skin. Dermatol Surg. 1997 Jul;23(7):527–535. discussion 535–526. [PubMed]

30. Sachdev M, Hameed S, Mysore V. Nonablative lasers and nonlaser systems in dermatology: current status. Indian J Dermatol Venereol Leprol. 2011 May-Jun;77(3):380–388. [PubMed]

31. Weiss RA, McDaniel DH, Geronemus RG. Review of nonablative photorejuvenation: reversal of the aging effects of the sun and environmental damage using laser and light sources. Semin Cutan Med Surg.2003 Jun;22(2):93–106. [PubMed]

32. Hardaway CA, Ross EV. Nonablative laser skin remodeling. Dermatol Clin. 2002 Jan;20(1):97–111. ix.[PubMed]

33. Lee SY, Park KH, Choi JW, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B. 2007 Jul 27;88(1):51–67. [PubMed]

34. Dierickx CC, Anderson RR. Visible light treatment of photoaging. Dermatol Ther. 2005 May-Jun;18(3):191–208. [PubMed]

35. Weiss RA, Weiss MA, Geronemus RG, McDaniel DH. A novel non-thermal non-ablative full panel LED photomodulation device for reversal of photoaging: digital microscopic and clinical results in various skin types. J Drugs Dermatol. 2004 Nov-Dec;3(6):605–610. [PubMed]

36. Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical experience with light-emitting diode (LED) photomodulation. Dermatol Surg. 2005 Sep;31(9 Pt 2):1199–1205. [PubMed]

37. Weiss RA, McDaniel DH, Geronemus RG, Weiss MA. Clinical trial of a novel nonthermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med. 2005 Feb;36(2):85–91. [PubMed]

38. Bhat J, Birch J, Whitehurst C, Lanigan SW. A single-blinded randomised controlled study to determine the efficacy of Omnilux Revive facial treatment in skin rejuvenation. Lasers Med Sci. 2005;20(1):6–10.[PubMed]

39. Russell BA, Kellett N, Reilly LR. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J Cosmet Laser Ther. 2005 Dec;7(3–4):196–200. [PubMed]

40. Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 2009 Dec;129(12):2751–2759. [PubMed]

41. Abergel RP, Lyons RF, Castel JC, Dwyer RM, Uitto J. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol. 1987 Feb;13(2):127–133. [PubMed]

42. Yu W, Naim JO, Lanzafame RJ. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol. 1994 Feb;59(2):167–170. [PubMed]

43. Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res. 2002 Sep;64(2):240–246. [PubMed]

44. Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta. 1999 Jan 11;1448(3):372–380.[PubMed]

45. Kucuk BB, Oral K, Selcuk NA, Toklu T, Civi OG. The anti-inflammatory effect of low-level laser therapy on experimentally induced inflammation of rabbit temporomandibular joint retrodiscal tissues. J Orofac Pain. 2010 Summer;24(3):293–297. [PubMed]

46. Geronemus RG, Weiss RA, Weiss MA, et al. Non-ablative LED photomodulation light activated fibroblast stimulation clinical trial. Lasers Surg Med. 2003;25:22.

47. McDaniel DH, Newman J, Geronemus R, et al. Non-ablative non- thermal LED photomodulation—a multicenter clinical photoaging trial. Lasers Surg Med. 2003;15:22.

48. Weiss RA, McDaniel DH, Geronemus R, et al. Non-ablative, non- thermal light emitting diode (LED) phototherapy of photoaged skin. Laser Surg Med. 2004;16:31.

49. Lee SY, You CE, Park MY. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med. 2007 Feb;39(2):180–188. [PubMed]

50. Aziz-Jalali MH, Tabaie SM, Djavid GE. Comparison of Red and Infrared Low-level Laser Therapy in the Treatment of Acne Vulgaris. Indian J Dermatol. 2012 Mar;57(2):128–130. [PMC free article] [PubMed]

51. Rotunda AM, Bhupathy AR, Rohrer TE. The new age of acne therapy: light, lasers, and radiofrequency.J Cosmet Laser Ther. 2004 Dec;6(4):191–200. [PubMed]

52. Cunliffe WJ, Goulden V. Phototherapy and acne vulgaris. Br J Dermatol. 2000 May;142(5):855–856.[PubMed]

53. Ross EV. Optical treatments for acne. Dermatol Ther. 2005 May-Jun;18(3):253–266. [PubMed]

54. Sadick NS. Handheld LED array device in the treatment of acne vulgaris. J Drugs Dermatol. 2008 Apr;7(4):347–350. [PubMed]

55. Goldberg DJ, Russell BA. Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris. J Cosmet Laser Ther. 2006 Jun;8(2):71–75. [PubMed]

56. Papageorgiou P, Katsambas A, Chu A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol. 2000 May;142(5):973–978. [PubMed]

57. Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002 Apr;1(4):225–236. [PubMed]

58. Calles C, Schneider M, Macaluso F, Benesova T, Krutmann J, Schroeder P. Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol. 2010 Jun;130(6):1524–1536. [PubMed]

59. Schroeder P, Calles C, Benesova T, Macaluso F, Krutmann J. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.Skin Pharmacol Physiol. 2010;23(1):15–17. [PubMed]

60. Kimura E, Kawano Y, Todo H, Ikarashi Y, Sugibayashi K. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biol Pharm Bull. 2012;35(9):1476–1486. [PubMed]

61. Barolet D, Boucher A. LED photoprevention: reduced MED response following multiple LED exposures. Lasers Surg Med. 2008 Feb;40(2):106–112. [PubMed]

62. Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc. 2009 Aug;14(1):44–49. [PubMed]

63. Menezes S, Coulomb B, Lebreton C, Dubertret L. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol. 1998 Oct;111(4):629–633.[PubMed]

64. Frank S, Oliver L, Lebreton-De Coster C, et al. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts. J Invest Dermatol. 2004 Nov;123(5):823–831. [PubMed]

65. Applegate LA, Scaletta C, Panizzon R, Frenk E, Hohlfeld P, Schwarzkopf S. Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair. Int J Mol Med. 2000 Mar;5(3):247–251. [PubMed]

66. Yu HS, Wu CS, Yu CL, Kao YH, Chiou MH. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Invest Dermatol. 2003 Jan;120(1):56–64. [PubMed]

67. Yaar M, Grossman K, Eller M, Gilchrest BA. Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol. 1991 Nov;115(3):821–828. [PMC free article] [PubMed]

68. Zhai S, Yaar M, Doyle SM, Gilchrest BA. Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Exp Cell Res. 1996 May 1;224(2):335–343. [PubMed]

69. de Paula Eduardo C, Bezinelli LM, de Paula Eduardo F, et al. Prevention of recurrent herpes labialis outbreaks through low-intensity laser therapy: a clinical protocol with 3-year follow-up. Lasers Med Sci.2011 Nov 16; [PubMed]

70. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis. 1998 Mar;26(3):541–553. quiz 554–545. [PubMed]

71. Munoz Sanchez PJ, Capote Femenias JL, Diaz Tejeda A, Tuner J. The effect of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg. 2012 Jan;30(1):37–40. [PubMed]

72. Bello-Silva MS, de Freitas PM, Aranha AC, Lage-Marques JL, Simoes A, de Paula Eduardo C. Low- and high-intensity lasers in the treatment of herpes simplex virus 1 infection. Photomed Laser Surg. 2010 Feb;28(1):135–139. [PubMed]

73. Schindl A, Neumann R. Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study. J Invest Dermatol. 1999 Aug;113(2):221–223. [PubMed]

74. Landthaler M, Haina D, Waidelich W. Treatment of zoster, post-zoster pain and herpes simplex recidivans in loco with laser light. Fortschr Med. 1983 Jun 9;101(22):1039–1041. [PubMed]

75. Perrin D, Jolivald JR, Triki H, et al. Effect of laser irradiation on latency of herpes simplex virus in a mouse model. Pathol Biol (Paris) 1997 Jan;45(1):24–27. [PubMed]

76. Korner R, Bahmer F, Wigand R. The effect of infrared laser rays on herpes simplex virus and the functions of human immunocompetent cells. Hautarzt. 1989 Jun;40(6):350–354. [PubMed]

77. Inoue K, Nishioka J, Hukuda S. Suppressed tuberculin reaction in guinea pigs following laser irradiation.Lasers Surg Med. 1989;9(3):271–275. [PubMed]

78. Inoue K, Nishioka J, Hukuda S. Altered lymphocyte proliferation by low dosage laser irradiation. Clin Exp Rheumatol. 1989 Sep-Oct;7(5):521–523. [PubMed]

79. Yu W, Chi LH, Naim JO, Lanzafame RJ. Improvement of host response to sepsis by photobiomodulation. Lasers Surg Med. 1997;21(3):262–268. [PubMed]

80. Schindl L, Schindl M, Polo L, Jori G, Perl S, Schindl A. Effects of low power laser-irradiation on differential blood count and body temperature in endotoxin-preimmunized rabbits. Life Sci.1997;60(19):1669–1677. [PubMed]

81. Manteifel V, Bakeeva L, Karu T. Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol B. 1997 Mar;38(1):25–30. [PubMed]

82. Bolton P, Young S, Dyson M. Macrophage responsiveness to light therapy: a dose response study. Laser Ther. 1990;2:101–106.

83. Funk JO, Kruse A, Kirchner H. Cytokine production after helium-neon laser irradiation in cultures of human peripheral blood mononuclear cells. J Photochem Photobiol B. 1992 Dec;16(3–4):347–355.[PubMed]

84. Yu HS, Chang KL, Yu CL, Chen JW, Chen GS. Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol. 1996 Oct;107(4):593–596. [PubMed]

85. Lee AY. Role of keratinocytes in the development of vitiligo. Ann Dermatol. 2012 May;24(2):115–125.[PMC free article] [PubMed]

86. Yu R, Huang Y, Zhang X, Zhou Y. Potential role of neurogenic inflammatory factors in the pathogenesis of vitiligo. J Cutan Med Surg. 2012 Jul-Aug;16(4):230–244. [PubMed]

87. Kitamura R, Tsukamoto K, Harada K, et al. Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and the downstream effector, MITF-M. J Pathol.2004 Apr;202(4):463–475. [PubMed]

88. Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol. 2009 Aug;161(2):273–280. [PubMed]

89. Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS. Low-energy helium-neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: recapitulation of vitiligo repigmentation in vitro. J Invest Dermatol. 2006 Sep;126(9):2119–2126. [PubMed]

90. Mandel A, Dunaeva LP. Effect of laser therapy on blood levels of serotonin and dopamine scleroderma patients. Vestn Dermatol Venerol. 1982 Aug;(8):13–17. [PubMed]

91. Mandel AS, Haberman HF, Pawlowski D, Goldstein E. Non PUVA nonsurgical therapies for vitiligo.Clin Dermatol. 1997 Nov-Dec;15(6):907–919. [PubMed]

92. Khullar SM, Brodin P, Barkvoll P, Haanaes HR. Preliminary study of low-level laser for treatment of long-standing sensory aberrations in the inferior alveolar nerve. J Oral Maxillofac Surg. 1996 Jan;54(1):2–7.discussion 7–8. [PubMed]

93. Anders JJ, Borke RC, Woolery SK, Van de Merwe WP. Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med. 1993;13(1):72–82. [PubMed]

94. Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med. 1989;9(2):174–182. [PubMed]

95. Mandel A. Skin repigmentation after laser therapy. Vestn Dermatol Venerol. 1984 Sep;(9):26–29.[PubMed]

96. Yu HS. Treatment of vitiligo vulgaris with helium-neon laser. MB Derma. 2000;35(13–18)

97. Peacocke M, Yaar M, Mansur CP, Chao MV, Gilchrest BA. Induction of nerve growth factor receptors on cultured human melanocytes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5282–5286. [PMC free article] [PubMed]

98. Wu CS, Lan CC, Chiou MH, Yu HS. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes. Acta Derm Venereol. 2006;86(6):498–502. [PubMed]

99. Morelli JG, Yohn JJ, Zekman T, Norris DA. Melanocyte movement in vitro: role of matrix proteins and integrin receptors. J Invest Dermatol. 1993 Oct;101(4):605–608. [PubMed]

100. Hedley SJ, Wagner M, Bielby S, Smith-Thomas L, Gawkrodger DJ, MacNeil S. The influence of extracellular matrix proteins on cutaneous and uveal melanocytes. Pigment Cell Res. 1997 Feb-Apr;10(1–2):54–59. [PubMed]

101. Ma HJ, Zhu WY, Wang DG, Yue XZ, Li CR. Endothelin-1 combined with extracellular matrix proteins promotes the adhesion and chemotaxis of amelanotic melanocytes from human hair follicles in vitro. Cell Biol Int. 2006 Dec;30(12):999–1006. [PubMed]

102. Ideta R, Soma T, Tsunenaga M, Ifuku O. Cultured human dermal papilla cells secrete a chemotactic factor for melanocytes. J Dermatol Sci. 2002 Jan;28(1):48–59. [PubMed]

103. Takano N, Kawakami T, Kawa Y, et al. Fibronectin combined with stem cell factor plays an important role in melanocyte proliferation, differentiation and migration in cultured mouse neural crest cells. Pigment Cell Res. 2002 Jun;15(3):192–200. [PubMed]

104. Gibson WT, Couchman JR, Weaver AC. Fibronectin distribution during the development of fetal rat skin. J Invest Dermatol. 1983 Dec;81(6):480–485. [PubMed]

105. Uitto J, Kouba D. Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. J Dermatol Sci. 2000 Dec;24 (Suppl 1):S60–69. [PubMed]

106. Wolfram D, Tzankov A, Pulzl P, Piza-Katzer H. Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg. 2009 Feb;35(2):171–181.[PubMed]

107. Bouzari N, Davis SC, Nouri K. Laser treatment of keloids and hypertrophic scars. Int J Dermatol. 2007 Jan;46(1):80–88. [PubMed]

108. Louw L. The keloid phenomenon: progress toward a solution. Clin Anat. 2007 Jan;20(1):3–14.[PubMed]

109. Uitto J. IL-6 signaling pathway in keloids: a target for pharmacologic intervention? J Invest Dermatol.2007 Jan;127(1):6–8. [PubMed]

110. Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku H, Kawanami O. Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol. 2007 Jan;127(1):98–105. [PubMed]

111. Liu W, Wang DR, Cao YL. TGF-beta: a fibrotic factor in wound scarring and a potential target for anti-scarring gene therapy. Curr Gene Ther. 2004 Mar;4(1):123–136. [PubMed]

112. Barolet D, Boucher A. Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: a case series. Lasers Surg Med. 2010 Aug;42(6):597–601. [PubMed]

113. Hamblin MR, Demidova TN. Mechanisms of low level light therapy – an introduction. Proc SPIE.2006;6140:61001–61012.

114. Ablon G. Combination 830-nm and 633-nm light-emitting diode phototherapy shows promise in the treatment of recalcitrant psoriasis: preliminary findings. Photomed Laser Surg. 2010 Feb;28(1):141–146.[PubMed]

US Dermatology Rewiew 2006 Calderhead Rg “Phototerapy in the new millennium implication in

everyday dermatological practice

Jurnal de Médicine Esthétique Vol- XXXXIII, 131, septembre 2006, 181-186

Photomed Laser Surg. 2006 dec, 24(6): 680-3

Journal de Médicine Esthétique Vol XXXXIX, 156, déc. 2012

REFERENZE BIBLIOGRAFICHE RIGUARDANTI I PRINCIPI ATTIVI

Dr. Baumann Leslie: The skin type solution. Bantam books, 2007

Dr. Ginsber Gary et Toal Brian. What’s toxic, what’s not. Berley’s books, 2006

Dr. Perricone Nicholas : The Perricone promise. Warner book, 2004

Dr.ssa Michaela Doll: Più giovani e più sani con gli antiossidanti. Hobby & work, 2007

Frankel E, Kanner J, German JB : Inhibition of oxidation of human low-density lipoprotein By phenolic substances in red wine – Lancet 4 (24) Apr 1993